1.EDI介绍
EDI是英文Electrodeionization的缩写,中文全称为“连续电去离子技术”,其主要用于替代传统混床技术。
超纯水的生产在过去的二十年间,在成本、环境及品质等因素的驱动下,其供水系统发生了许多变化,特别值得一提的事,目前存在一个明确的方向,就是减少对离子交换工艺的依赖性,以便尽可能减少化学药品的使用,并提高产水量。有一项重要的事实可以说明该趋势—反渗透作为阴阳床的替代技术正在普及。
反渗透作为有效的脱盐技术,其脱盐率可以达到95~99%。但是,RO对离子的去处效果有一定的限度,一般来说,产水电导率0.5us/cm(2 MOhm-cm)是其脱盐的极限。
当产水水质有更高的要求的时候,就需要采用混床或等同技术。
EDI能高效去除残余离子和离子态杂质, 尤其当用户产水水质要求高,比如对电阻率(>10 或者16MOhm-cm), 二氧化硅(<10ppb或者<1ppb),钠离子,硼等有严格的要求的时候, EDI技术更体现了其品质的优 越性,且EDI系统的运行成本明显低于与混床,与混床装置及其辅助设备相比,其设备的生命周期总成本占有优势。
EDI技术在大约50年前就出现了,但是大型的商业化直到1986年才真正开始,时至如今EDI制造商已经为全球制造了1000套以上的EDI系统。
2. EDI工作主要有三个过程:
1,淡水进水淡水室后,淡水中的离子与混床树脂发生离子交换,从而从水中脱离;
2,被交换的离子受电性吸引作用,阳离子穿过阳离子交换膜向阴极迁移,阴离子穿过阴离子交换膜向阳极迁移,并进入浓水室从而从淡水中去除。
离子进入浓水室后,由于阳离子无法穿过因离子交换膜,因此其将被截留在浓水室,同样,阴离子无法穿过阳离子交换膜,被截留在浓水室,这样阴阳离子将随浓水流被排出模块;与此同时,由于进水中的离子被不断的去除,那么淡水的纯度将不断的提高,待由模块出来的时候,其纯度可以达到接近理论纯水的水平。
3,水分子在电的作用下被不断的离解为H+和OH-,H+和OH-将分别使得被消耗的阳/阴树脂连续的再生。
过程1和过程3是树脂的消耗和再生的两个相反过程,这两者会在模块内部形成一个动态平衡。
3.EDI与混床的比较
EDI相对与混床具有如下的优势:无需再生化学品的再生;不需要中和池及中和的酸碱;地面和高空作业能够极大地减少;所有的水处理系统操作都能够在控制室内完成 – 无需前往现场;减小了EHS风险;连续工作,不是间歇操作,长时间稳定的出水水质;没有废弃树脂污染排放的风险。
4.无需再生化学品的再生
无需化学品再生,意味着不需要相关化学品的运输,储存和使用,也避免了相关的ESH风险,并且大大降低了系统的运行费用。
5.运行成本低
EDI的运行的费用几乎全部为电耗,成本大幅往往低于混床。平均产水1吨,其运行所需的电耗仅为0.132~0.396KWhr;而且其运行过程中,几乎不需要人工操作,降低了人工费用。
6.水利用率高
相比于混床,由于没有化学再生的需要,其系统的水利用率为95~99%,这对于中大型系统、水资源紧缺地区的节水效益尤为明显。
7.设备占地空间更小
相对与混床及其附属设备而言,EDI系统的占地空间更小,而且对厂房的要求不高。对于更大的系统,仅需将系统做相应的延伸或者增加套数即可。
此外,其运输和安装重量也较轻。
8.极大地减少了地面和高空作业
EDI模块及其系统的安装十分简便,不同水量的系统就像搭积木一样方便。