随着钢铁材料性能的不断提升,焊接用钢向高纯度、轻质化、高强化、微合金化的方向发展,与之对应的焊接材料却难以满足焊接冶金理论的发展,传统的焊接评价方式已经落后,尤其是在电子电气产品的生产中,WEEE、RoHS指令的生效,对无铅替代钎料的技术挑战,迫切需要我国加大对无铅元器件制造、无铅产品装备及制造工艺等方面的研究。同时,对铝、镁、钛等轻质材料的不断应用,扩散焊、高频焊及摩擦焊等非熔性焊接技术、钎焊、高能束流焊接技术也获得了快速发展。焊接技术的自动化水平已经成为提高焊接效率和提升焊接质量的重要途径,特别是在航天航空业、重机制造业、核电工程业等领域,焊接机器人以其成熟的自动化控制技术,实现了对焊接过程中综合利用电弧焊、压焊、钎焊等技术的检测和控制,从而能够敏锐地在捕捉焊接特征信号的基础上,实现直接焊接操作。为了实现对焊接过程中复杂物理化学焊接过程的模拟和仿真,利用计算机技术和仿真技术,来实现对焊接热过程、焊接冶金过程中的应力变形进行分析,从而科学预测焊缝组织与焊接结构的残余应力及变形参数,从而推动焊接理论的发展。
符合:GB/T 5293F5A2-H10Mn2
相当:AWS A5.17F7A0-EH14
说明:CHF101是氟碱型烧结焊剂;碱度约1.8,呈球形颗粒,粒度10~60目;具有优良的焊接工艺性能,电弧燃烧稳定,焊缝成型美观,脱渣容易,焊缝具有较高的低温冲击韧性,可交直流两用,直流焊接时焊丝接正极。 抗拉强度Rm(MPa)屈服强度Rp0.2(MPa)伸长率A(%)-20℃冲击功Akv(J)标准值480~650≥400≥22≥27一例52543030140用途:配合适当焊丝,如H10Mn2等,用于锅炉、压力容器、桥梁、贮运油(气)罐、船舶等钢结构焊接。