浅层气浮设备在污水引入大量微小气泡,气泡通过表面张力作用粘附于细小悬浮物上,形成整体比重小于1的状况,根据浮力原理至水面,实现固液分离,污水得以净化。传统溶气气浮由于设计结构上的致命缺陷,处理能力很低,污水在气浮内滞留时间需40-60分钟,设备体积极为庞大,且净化率很低,现已淘汰。
浅层气浮设备的出现是气浮净水技术的一个重大突破。它改表态进水,动态出水为动态进水,静态出水,利用“零速度”原理,使浮选体在相对静止的环境中垂直浮至水面,上浮路程减至*小,且不受出水流速影响,理论池深仅需约450mm,污水在气浮中的滞留时间仅需3-5分钟,设备体积大幅减小。加之气泡分布均匀,无气浮死区,刮泥装置对水体扰动小等优点,净化率大幅提高。
浅层气浮设备的研制成功,是气浮净水技术的又一次重大突破,并使之发生质的飞跃。超效浅层气浮设备主要是采用了特殊结构的高效溶气装置各和高效均衡消能系统。溶气率达到理论*大值且无浓度梯度。根据斯笃克斯公式测量计算,微气泡平均直径仅约1um,即当溶气量相等时,微气泡中总表面积至少增大了400余倍。实际上,由于溶气率大幅提高,微气泡总表面积或气泡密度增加了上千倍。国外学者研究表明:当微气泡直径小于一定直径后,根据统计力学,其周边水分子热运动的撞击力将失去平衡,气泡将参与部分布朗运动,极为有利于气泡内氧分子向污水中的扩散,因而曝气效果将高出远不止上千倍!另一方面,溶解性污染物的电离,是一种处于动态平衡下的可逆反应,极性水分子和被双电层包围的有机悬浮物将促进电离,而高密度,微小直径的气泡,在一定程度上会促使可逆反应向生成化合物的方向偏移。而且对溶解性COD的去除率高达45%—73%。